
it I UNLIMITED 109992
i iiiiiiiiiiii...

* Q " RSRE
MEMORANDUM No. 4268

ROYAL SIGNALS & RADAR
ESTABLISHMENT

I

A PERSISTENT HEAP FOR ALGOL 68

Authors: S J Rees, G Cliff,
P D Hammond, N E Peeling

40

PROCUREMENT EXECUTIVE, DTIC
6ELECTE0 MINISTRY OF DEFENCE, JUN06198911

aE R S RE MALVERN, S D
0 WORCS.a
z

0

89 6 05085

DISCLAIMI NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

CONDrTONS OF RELEASE

0039124 BR-109992

...... a a htt . s. U

COPYRIGHT (c)
1988
CONTROLLER
HMSO LONDON

ttaagataaaaiatatataataaath y

Reports quoted are not necessarily available to members of the public or to commercial
organisations.

ROYAL SIGNALS AND RADAR ESTABLISHMENT

Memorandum 4268

TITLE: A PERSISTENT HEAP FOR ALGOL68

AUTHORS: S.J. Rees G. Cliff P.D. Hammond N.E. Peeling

DATE: February 1989

SUMMARY

keepSakejhl is a multiuser data base kernel which extends a programming language
to enable simple data structures to be written to disc. It is not possible for the user to
call KeepSake directly on compound data structures. This paper describes a method
of extending the KeepSake procedures to facilitate the production of a persistent
heap, in which all the data structures in the programming language can be written to
disc. / ,-V,, - ,

Copyright
C

Controll& IMSO London
1989

THIS PAGE IS LEFT BLANK INTENTIONALLY

A Persistent Heap for AlgoI68

Contents

1.0 Introduction

2.0 How to use Persist and Unpersist

3.0 Description of the method used by Persist and Unpersist

4.0 Type checking

5.0 Acknowledgements

6.0 References

oTIO

OpPV

Acc:sslon For

NTIS QRA&I [

DTIC TAB

Unamnounced 0
Just ificatio

By

Distribution/

Availability Codes

A nil and/or
Dist Special

THIS PAGE IS LEFT BLANK INTENTIONALLY

1.0 INTRODUCTION

KeepSake is a multiuser database kernel which extends a programming language to
enable simple data structures to be written to disc. KeepSake write procedures take
a block of data, write it to disc and return a pointer to that data. The read procedures
take a KeepSake pointer and assign the data accessed to a user defined array. These
procedures are used to construct a network of data and pointers. KeepSake comes
with a sophisticated suite of data block management procedures, for example, disc
garbage collection.

It is not possible for the user to call KeepSake directly on compound data structures;
these must be broken into simple data structures before the KeepSake routines can
be used. This memorandum describes how to extend KeepSake to allow a user to
produce a persistent heap, i.e., to write a complete data type to disc, including any
references, without having to unpack the data himself.

Although a KeepSake discpointer is a simple structure it is recognised as a "special"
data type and is treated in a specific way because of the need to preserve the
contents of the structure. It is therefore possible for the user to persist a data type
which contains KeepSake discpointers to data which has already been persisted.

The software produced is in the form of two procedures, Persist and Unpersist. It was
developed using Algol68 as the user's programming language on a VAX/VMS
system; however the method used could be easily applied to other languages and
machines.

The Persist routine requires information on the type of the object to be persisted and
the object itself. Persist takes as its parameters a KeepSake discfile, a mainstore
reference to the data structure which is to be persisted and a vector of characters
which describes the mode of the data structure. Persist delivers a KeepSake
discpointer as its result. Clearly it is inefficient to describe the data type to be
persisted by a vector of characters as this requires the user to provide a block of text
twice, once for the compiler and once for the Persist procedure, and discrepancies
between the two are not detected. However, the Persist procedure needs to know the
exact mode of the data type which is to be persisted, and has to accept the mode of
any data structure no matter how complex, and this cannot be described without the
use of an infinite union which is not implemented in languages such as Algol68 and
C. An alternative approach would be to alter the compilers to build this in as is done
already for read and print procedures. One language which has built in persistence is
PS-Algol[2]; persistence in this language is totally transparent, there being only one
pointer, the PNTR, for mainstore and filestore alike. In contrast to PS-Algol, Persist
was designed to use specific pointers for filestore data so the user is always aware if
he is addressing filestore or mainstore.

Unpersist has two parameters, the KeepSake discfile where the data was written and
the KeepSake discpointer produced by Persist. It delivers as its result a mainstore
reference to the data which had been persisted.

1

2.0 HOW TO USE PERSIST AND UNPERSIST

The procedure Persist takes as its first parameter a KeepSake DISCFILE.
Directions on producing and initialising KeepSake discfiles are given in [1].

The second parameter of Persist is a VECTOROCHAR which gives all the
declarations necessary to describe the mode of the object which is to be persisted.
Each mode in the vector of characters must be described in terms of basic modes
(INT, REAL etc) or of a mode which has preceded it in the character string. The
syntax used to describe the modes is exactly that used in Algol68, which means that
the user can use a text editor to extract the mode declarations from his program for
use in the string. The final mode in the character string must be the mode of the
object which is to be persisted. The following example may help:-

VECTORljCHAR id = "MODE M1I = STRUCT(INT iREAL r,
"M-2 = STRUCr(BOOL b, CHAR c),"
"M3 = STRUCT(M1I m, M2 n);",

The third parameter of Persist is an INTEGER which is the start address of the data
to be persisted. This can be produced by using BIOP 99 to change the mode of a REF
to an INTEGER as in the following example. Note especially that in the case of
vectors and arrays a single pointer to the data is delivered by a REF REF MODE
and this is the mode which must be changed to an INTEGER by BIOP 99.

The result of a successful call of Persist is a KeepSake DISCPTR. The user can
write this DISCPTR away using the normal KeepSake routines or he can incorporate
it into an Algol structure which can be the parameter of a subsequent call of Persist.

The following lines of code are all that need to be added to a user's program to
enable him to persist a data structure of MODE EXAMPLE. The Persist procedure
can only be used within a KeepSake environment and the KeepSake DISCFILE it
uses must have been opened and initialised using standard KeepSake routines. The
user must have access to the Algol68 module containing the Persist software.

2

DISCPTR discptr

VECTOROCHAR id = "MODE MYMODE = STRUCT(INT i, REF REAL x),"
"EXAMPLE = STRUCT(MYMODE m, INT n. REF[JINT data);";

OP(REF EXAMPLE)INT RTI = BIOP 99;

EXAMPLE example:

discpr := persist(keepsakediscfile, id, RTI(exarnple));

("discptr" can be filed away using standard KeepSake
routines to rile DISCPTqs or it can be
incorporated into an Algol structure and
persisted later)

The procedure Unpersist takes as its parameters a KeepSake DISCFILE and
DISCPTR. It delivers as its result an INTEGER which is the value of the mainstore
pointer to the data type which was persisted. The user musL convert this INTEGER
to a REF MODE (or in the case of vectors and arrays a REF REF MODE) with a
BIOP 99.

The data structure EXAMPLE persisted above can be unpersisted by adding the
following code to a program. As with Persist the call of Unpersist must be within a
KeepSake context and the KeepSake DISCFILE must have been opened and
initialised using standard KeepSake routines. The KeepSake DISCPTR must have
been delivered as the result of a call of Persist.

EXAMPLE recovered_data

OP ([NT) REF EXAMPLE ITR = BIOP 99;

recovereddata := ITR(unpersist(keepsakediscfile, discptr))

(recovereddata can then be used normally)

3.0 DESCRIPTION OF THE METHOD USED BY PERSIST AND UNPERSIST

3.1 Persisting data

Briefly, Persist separates data items into mainstore addresses and literals, it repacks
the data into a contiguous block and creates a separate table to show which
elements of this data block are addresses. KeepSake discpointers are copied to a
separate vector of discpointers and their locations in the data block are remembered
in a second table. The data block, tables and discpointers are then filed away using
basic KeepSake routines. It is necessary to tell KeepSake specifically of any
discpointers included in the user's data to prevent their being lost during a KeepSake

garbage collection. A more detailed description of the Persist software is given
below.

Persist uses a lexical reader and syntax analyser to convert the vecto, of characters
which describe the data to be persisted into a format which it can use. Each data
type is described simply as a number of bytes with pointers to those bytes which are
KeepSake discpointers and mainstore addresses. The syntax analyser has to take
account of the way the Algol68 compiler on VAX/VMS represents its data in
mainstore.

The procedure which copies the data from mainstore to an output buffer is salled
recursively. At any call one data type is relocated as follows. Firstly all the bytes
describing a data type, including, references and KeepSake discpointers, are copied
from mainstore and appended to an output buffer. At this stage any bytes in the data
type which represent references will be incorrect and still contain the mainstore
addresses. If the data type contains any KeepSake discpointers, copies of them are
appended to a vector of discpointers and the position of bytes which represem
discpointers in the output buffer is recorded in a separate vector. If the data type
contains references, the procedure is called again to copy the data types pointed to
by the references, and the bytes in the output buffer which represent the references
are reset to be the element number of the output buffer where the first byte of the
data they point to is written. As with discpointers the position of the reference bytes
in the output buffer is recorded in a separae vector. This recursive method of
relocating data deals with any data type including multiple linked lists. The
following example illustrates how data is relocated.

Assume the data is to be filed as two vectors of integers. The first vector, VI say, is
the output buffer containing all the users data, literals and addresses. The literals
will be correct but the adC esses will be with respect to the beginning of the vector
V1. The second vector, V2 say, is the reference table and will have one element for
each reference in the users data, recording which elements of VI are references.

Consider the following example -

INT a:=1, b:=2, c:=3;
REAL d.=2.5;
MODE EXAMPLE = STRUCT(INT i, REF INT j, INT k, REF REAL 1);
EXAMPLE s = (a, b, c, d);

The data type s would be written away as two vectors as follows:-

VI = (1, 5,3,6,2,16672, 0)
V2 = (2,4)

V2[1]=2 tells us that Vl[2] is a REF. Vl[2]=5 tells us that the data pointed to
by the REF starts at VI[5]. As the REF was to an INTEGER the data occupies only
one element of VI. However, consider V212]=4, this tells us that VI[4] is a REF;

4

V1[4]=6 tells us that the data pointed to by the REF starts at V116]. In this case the
REF is to a REAL and the data occupies two elements of V1. (16672, 0) is the
representation on Vax of 2.5 stored in twc words.

Before a data type is relocated its reference is checked to see if it is a reference to
NIL. This is a special case; no data is relocated and the bytec representing the
reference are reset to the literal value NIL which for the Algol68 compiler on
ViX/VMS is 0. In addition to checking for NIL --he reference i. checked to see if it
is a reference to c6ata which has already been relocated. This is achieved by
comparing the reference and data length of the data type to be relocated with a table
of these values for data already processed. There are three cases. In the simple case
the data type is a complete copy of data already relocated; no further relocation is
necessary and the bytes representing the reference are reset to be the element
number of the output buffer where the first byte of the data they point to is already
written. In the second case the data type to be relocated contains a data type which
has been processed already, for example, a user persists an element of a vector and
then the complete vector. In this case, after the data type has been relocated and its
reference bytes reset, the original copy of the included data type is removed from the
output buffer and its reference bytes are updated to its new position. The final case
is when the data type to be relocated has some data in common with a previously
processed data type, for example, the user persists two overlapping slices of a large
vector. In this case the foftware relocates the union of the two data types and resets
their reference bytes accordingly. Duplicated data is removed from the output buffer
and the buffer is compressed. Data persisted in this way is consistent, in that should
a data type contain addresses pointing to a common area of store, for example, a
structure containing an array and a slice of the same array, only one copy of the array
will be persisted ind the slice will be a pointer into that array.

In practice data cannot be copied directly to an output buffer as, with large data
types, this would cause storage problems. However, it is possible to record sufficient
data to enable the buffers to be created, or partially created, at the time of data
transfer.

3.2 Unpersisting data

Unpersist uses KeepSake routines to recover the filed data block, discpointers and
tables. The discpointers in the data block are overwritten by the recovered
discpointers using the locational information stored in the second table. The
addresses in the data block are reset using the start address of the data block in
mainstore and information from the first table. The mainstore start address is then
delivered as the result. As an illustration of the method used by Unpersist, consider
the data type EXAMPLE persisted above. The data was stored as two vectors as
foUows:-

VI =(1, 5, 3,6, 2, 16672,0)
V2 = (2, 4)

Recovery of this data is simple. Both vectors, V I the output buffer and V2 the
reference table, are copied into mainstore and the mainstore address of the first
element of VI is established; say this is called final-address. Elements V1[2] and
Vi [4], which are known to be references from vector V2, are incremented by the
valu- of finaladdress. All that now remains is to assign the value final-address to a
variable of mode REF EXAMPLE. The above data type did not contain any
discpointers. Had it done so, they would have been recovered, along with the table
describing their location in the output buffer. The bytes representing discpointers in
the output buffer would then have been overwritten by the recovered discpointers. It
is necessary to reset the discpointers in the output buffer because they may have
been given new values during a compacting garbage collection.

Storing the tables describing the data type on disc means that the mode of the object
which has been persisted does not have to be given to Unpersist; an alternative
solution would be to pass a vector of characters describing the persisted mode to
Unpersist and to parse it to produce the tables.

4.0 TYPE CHECKING

Given access to the compiler, the "ideal" "safe" solution would be to file the
compiler's description of the data type to be persisted with the persisted data. On
recovery, this description could be compared with the compiler's description of the
data type to which the recovered data will be assigned. This would ensure that data
is never recovered into an incorrect data type. As Persist does not interact with the
compiler, this is not possible and there is no check that the user has supplied the
correct mode to Unpersist although, should data be recovered to an incorrect mode,
it would almost certainly result in an access violation. The main concern is to
ensure that data on disc is not corrupted by a user inadvertently recovering "rubbish"
into a discpointer. Here we rely on KeepSake's routine type checking which will not
accept discpointers which could not have been produced by KeepSake for the
database in use. This means that an incorrect discpointer is almost certain to fail
when it is submitted to a KeepSake read or write procedure.

5.0 ACKNOWLEDGEMENTS

The author has pleasure in thanking colleagues at RSRE, in particular Paul
Hammond for all his advice and assistance during the development of this software.
Also Gerard Cliff, a vacation student from Loughborough University, who developed
the lexical reader and syntax analyser.

6.0 REFERENCES

[1 N.E. Peeling, K.R. Milner.
KeepSake : A Database Kernel.
RSRE Report No. 88014 December 1988.

Slai. i m I l I~il6

[2] Ps-Algol Reference Manual 4th Edition.

PPRR-12.88. University of Glasgow & University of St Andrews.

THIS PAGE IS LEFT BLANK INTENTIONALLY

DOCU4Nl CONTROL SH[ET

Overall security classification of sheet LN(71. ..I.

(As far as possible this sheet should contain only unclassified information. If it is necessary to enter
classified information, the box concerned must be marked to indicate the classification eg (R) (C) or (S)

1. rRIC Reference (if known) 2. Originator's Reference 3. Agency Reference 4. Report Security
0 ss ,lcafion

Memo 4268 UNCLASSIFIED

5. Originator's Code (it 6. Originator (Corporate Author) bee and Location
known) ROYAL SIGNALS & RADAR ESTABLISHMENT

7784000 ST ANDREWS ROAD, GREAT MALVERN,
WORCESTERSHIRE WR14 PS

58. sponsoring Agency's 6a. Sponsoring Agency (Contract Authority) lame and Location

Code (if known)

7. Title

A PERSISTENT HEAP FOR ALGOL68

7a. Title in Foreign Language (in the case of translations)

?b. Presented at (for conference nu ers) title, place and date of conference

8. Author 1 Surname, initials g(a) Author 2 9(t) Authors 3,4... 10. Date Up. ref.

REES, S J CLIFF, G HAMMOND, P L 1989.02 6

11. Contract Number 12. Period 13. Project 14. Other Reference

15. Distribution statement

UNLIMITED

Descriptors (or keywords)

continue on separate piece of paer

Abstract

KeepSake [11 is a multiuser data base kernel which extends a programming
language to enable simple data structures to be stored on disc. This paper describes
a method of extending the KeepSake procedures to facilitate the production of a
persistent heap, in which all the data structures in the programming language can be
stored on disc.

$80/48

THIS PAGE IS LEFT BLANK INTENTIONALLY

